Calculus II Study Guide 29 Due Date:	Class:	
$\textbf{No Work} \Leftrightarrow \textbf{No Points}$ $\textbf{Use Pencil Only} \Leftrightarrow \textbf{Be Neat \& Organized}$		
1. If $\lim_{n\to\infty} a_n$ exists, then the so Determine whether each seque (a) (3 points) $a_n = \frac{n^3}{n^3 + 1}$		
(b) (4 points) $a_n = \ln(n +$	$-1) - \ln n$.	(a)
(c) (4 points) $a_n = \arctan$	$n(\ln n)$.	(b)
		(c)

- 2. Use the Test for Divergence that says if $\lim_{n\to\infty} a_n$ does not exist or $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent to show the following series diverges.
 - (a) (3 points) $\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{2n^2 + 1} \right).$

(a) _____

(b) (4 points) $\sum_{n=1}^{\infty} \sqrt[n]{2}.$

(b) _____

3. (5 points) Find the sum $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^{n+1}}.$

3. _____

4. _____

5. Use the Integral Test to determine whether the following series is convergent or divergent.

(a) (4 points)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}.$$

(b) (4 points)
$$\sum_{n=1}^{\infty} n^3 e^{-n^4}$$
.

(b) _____

6. Use the Comparison Test or the Limit Comparison Test to determine whether the following series is convergent or divergent.

(a) (4 points)
$$\sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1}$$
.

(b) (5 points)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2 - 1}}$$
.

(c) (5 points)
$$\sum_{n=2}^{\infty} \frac{n \sin^2 n}{1 + n^3}$$
.